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appearing in kinetic theory is discussed in the frame of a stationary problem in gas dynamics 
with removal events. A wide clans of transition kemels allowing such reducibility is 
characterized, and the validity of these kernels as approximations to real ones is studied 
in terms of their asymptotic behaviour far large and small velocities. In fact, this behaviour 
is shown to determine the corresponding limiting velocity dependence in the Solutions to 
the kinetic equation. 

1. Introduction 

The bilinear integral operator 

. W l  = f ( o )  I " ' K ( u ,  w ) f ( w )  dw 
0 

acting on a functionf(u) (OS oSao), with a given kernel K ( u ,  w )  which satisfies 

K ( u ,  w ) = K ( w ,  U )  (1.1~1) 

appears, as well as similar integral forms, in a variety of problems related with kinetic 
theory [ l ,  21. Consider, for instance, the following situation arising in extended kinetic 
theory [3,4]: The particles o f a  spatially homogeneous, velocity isotropic gas undergo 
removal collisions, i.e. binary interactions, in which the particles are destroyed. This 
is the case, for example, for an atomic gaseous species X subject to the reaction 

xtx-x, 
in which, from the point of view of the atomic distribution, the formation of molecules 
X, can be seen as 'destruction' of atoms. The same situation arises when considering 
ionic recombination. Of course, if this removal is the only process acting on the gas, 
the system evolves towards a vanishing distribution state. This continuous depletion 
in the gas distribution can, however, be compensated with the addition of an external 
source, providing particles to the system with a fixed distribution. The competition 
between removal and source determines a non-trivial evolution, characterized in fact 
by a stationary siaie which satisfies ihr noiiiiriear iniegrai cquaiion 

mf l=  S ( u )  (1.2) 

wheref(u) is now the (time-independent) distribution function for the gas, depending 
on the velocity modulus U, and S ( u )  is the source distribution. In this problem, the 

0305-4470/92/154167+14$04.50 0 1992 IOP Publishing Ltd 4167 



4168 D H Zanette 

kernel K(u, w )  of (1.1) represents the transition frequency of a removal event by 
collision of two particles with velocities U and w, respectively. The symmetry (1.10) 
accounts now for the identity of the involved particles. As in most physical applications, 
both S(u) and K(u,  w), as well as the solution f ( u ) ,  are required to be non-negative 
functions of their arguments. 

The rigorous expression for the kernel K(u, w )  is obtained from the microscopic 
transition probability I ( l u -  w l )  = l u -  w l u ( l u -  w l ) ,  depending on the modulus of the 
relative incoming velocity U = J u  - w J  through the collision cross section U( U), whose 
angular dependence has been eliminated by integration. Indeed, the transition kernel 
is given by [SI 

K(u, w)=-  i"+w uI(u)du  (1.3) 

as an integral between the extreme values attained by the relative incoming velocity. 
Equation (1.3) determines, in general, a very awkward structure for K(u, w). In fact, 
except for some very special forms of I(u) (see section 2), this function is typically 
expressed in two pa ts ,  according to how U and w compare, as implied by the absolute 
value in the lower limit of the integral. This fact is usually neglected when proposing 
model expressions for the transition kernel [SI, in the hope that this will not affect 
considerably the main characteristics of the solutions to the kinetic equations. However, 
it is worthwhile to remark that such two-folded structure accounts for the fact that for 
fixed U and w, K ( u ,  w )  is only determined by the values of I(u) in a bounded interval 
of the variable U, so that a model expression for the transition kernel which does not 
present such structure cannot be expected to derive from a microscopic cross-section. 
In any case, even for the simplest models, the solution of the related integral equa- 
tions implies the use of proper numerical techniques, as an analytical treatment is 
impracticable. 

In this paper, the problem of dealing with an equation like (1.2) is attacked from 
a different point of view. In fact, a systematic procedure is developed for reducing the 
integral operator to a nonlinear differential form for a new dependent variable. Accord- 
ingly, suitable boundary conditions are derived, in order to completely determine the 
differential problem. The scheme is applicable to a certain class of symmetric transition 
kernels, which are chosen to present the two-folded structure implied by (1.3) and 
characterized in the main part of the paper. It is clear that the reduction of the kinetic 
equation to a differential form enables the application of a wide toolkit of standard 
analytical and numerical analysis. Therefore, particular attention is paid to the validity 
of such kernels as models for real processes. The extension to other kinetic equations 
of interest is also discussed. 

2vw U-WI 

2. Previous results on equation (1.2) 

Before passing to the exposition of the reduction method from integral to differential 
form for the nonlinear operator ( l . l ) ,  it is convenient to include a brief review on 
known solutions for equation (l.2), for arbitrary forms of either the source term S ( u )  
or the kernel K (  U, w) .  These solutions will be used to compare with the results obtained 
later. 

Even when existence and uniqueness of solutions to (1.2) are easily proven to hold, 
the question of finding its explicit solution is indeed a very hard one. From the physical 
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point of view, the most interesting question in dealing with this stationary kinetic 
equation is to obtain the distributionf(u) as  a function of S(u)  for a given symmetric 
transition kernel. Unfortunately, the forms of K ( u ,  w)  allowing for such a general 
solution are scarce, and do not seem to be particularly representative of real problems. 
Two special classes deserve to be quoted: 

(i) K ( u ,  w )  separable with respect to multiplication, i.e. 

K(u ,  w)= k(u)k(w) (2 .1)  

for which the solution to (1.2) is given by 

with 

( 2 . 2 a )  

(2 .26)  

the mean value of k(u) overthe distribution function.This quantity has to he determined 
consistently from equations (2 .2) ,  and reads 

m 

( k ) 2 = j  S(u)du. (2 .2c)  
0 

A particularly trivial situation in which K ( u ,  w) has the form (2.1) is obtained for 
I ( u ) = 1  (cf (1.3)), which defines the Maxwell interaction model [ 6 ] ,  and implies 
K (  U, w) = 1. In this case, ( k )  = (1) represents the number density of the gas. 

(ii) K(u ,  w) separable with respect to sum, i.e. 

K ( u ,  w) = k ( u ) +  k(w) (2.3) 

determining 

( 2 . 4 a )  

The density (1) and the mean value ( k )  are the solutions to the following two functional 
equations: 

( 2 . 4 6 )  

Within this class of separable kernels one finds the 'very-hard-particle' model [6], 
I(u) = u2,  which produces K ( u ,  w) = u 2 +  w2.  

These two cases of solvable models can be put together in the following symmetric 
form: 

N 

K ( u ,  w)  = C a,k,(u)k,(w) ( 2 . 5 )  
' . , = I  
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where ai i=  a,,, N is arbitrary, and the functions k,(u) are chosen so that K ( u ,  w) is 
positive. In this generalization, the solution to (1.2) reads 

and the constants (k.) are obtained from the set of functional equations 

(2.66) 

From a mathematical viewpoint, it is also interesting to find solutions to (1.2) as 
a function of the kernel K ( u ,  w), for a given form of the source S(u). To the author's 
knowledge, however, there is only one known form of S( U) allowing for a general 
solution to the stationary kinetic equation, namely 

S(u) = SoS(u - uo) (2.7) 
i.e. a monochromatic source. Provided that K ( u o ,  U,,) # 0, the solution in this situation 
is 

so that, as expected, in the stationary state all particles have velocity uo. Since this 
solution holds for arbitrary forms of K ( u ,  w), it is an ideal tool for checking the results 
obtained in the following. 

3. Reduction to the differential form 

Consider the class of symmetric kemels with two-folded structure: 

$(U. w)k(u)k(w) for w < U I $(w, u)k(u)k(w) fo rw>u  
K ( u ,  w)= 

where $(U, w) and k(u) are chosen so that K ( u ,  w) is positive. The stationary kinetic 
equation (1.2) reads, in this situation 

In order to reduce this equation to a differential form, the dependent variable is 
changed to 

~ ( 0 )  = 1; +(U, w)k(w)f(w) dw+ lom $(w, u)k(w)f(w) d w  (3.3) 

which is just the factor in the square brackets of (3.2). The idea is now to obtain the 
function /(U) from a derivative of g(u), whose order must be properly chosen. The 
first derivative of the new unknown g(u), as expressed by (3.3), is given by 

J d u ) =  j" a,$(u, w)k(w)f(w) dw+ juma2$(w, u)k(w)f(w) dw (3.4) 

where J l  and a2 indicate derivation with respect to the first and the second variable, 
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respectively. Accordingly, the ( n  + 1)th order derivative of g ( u )  reads 

J:"g(U)= 1 J r { [ J ; - " Q ( u ,  U ) - J ; - " $ ( U ,  o)lk(u)f (U)] 

4171 

m=o 

+j: J;"Q(u, w)k(w)f(w) d w t  J;+'$(w, u)k(w) f (w) dw. (3 .5 )  

This derivative can be seen to be proportional to k(u) f (U) by requiring the following 
conditions: 

J;"$(u, w)=J;+'$(u, w ) = O  ( 3 . 6 ~ )  

J Y $ ( U ,  U)-J,"$(U,  u)=O (3.66) 

" 

and 

for m = 1,2,. . . , n - 1. Indeed, if equations (3.6) are fulfilled, one obtains 

J:"g(u)=[J ;$ (u ,  u)-J;$(u, ~ ) l k ( u ) f  (U) (3.7) 
as in the RHS of (3 .5 )  the only contribution comes from the term with m = 0 in the 
summation. In this situation, the integral equation (3.2) reduces to 

g(u)J:"g(u)=lJ;$(u ,  0 )  -J;$(u, O ) l s ( ~ )  (3.8) 
which is a nonlinear ordinary differential equation for g ( u ) .  Observe that, by virtue 
of (3.6a), the square bracket in the RHS is a constant, as its derivative is identically zero. 

Of course, the function $(U, w) has to have a very particular form in order to fulfill 
conditions (3.6).  In fact, the characterization of the functions satisfying those conditions 
is the next problem to be dealt with. One observes then that (3.6a),  which requires 
the (n+l ) th  derivatives of Q to vanish, implies that this function is a polynomial 
whose degree is at most equal to n. For simplicity, it is taken to be a homogeneous 
polynomial of nth degree, i.e. 

$(U, w)  = $,u'w"-'. (3.9) 
r=o 

The generalizations discussed in section 5 relax this particular choice. 

(3.6b),  required for $(U, w) as given by (3.9).  namely, 
Differentiating conveniently with respect to U and w yields the form of conditions 

n 

r"(Q,-$n-r)=O (3.10) 

for m = 1,2, ,  . . , n - 1. A relevant question regarding the freedom in the choice of a 
suitable form for $(U, w )  is whether conditions (3.10) are independent or not. It  can 
be seen that, for m even, the corresponding condition (3.10) can be derived from those 
obtained for q < m. In fact, one obtains successively 

,='I 

E r m ( Q r - Q n - J =  1 ( n - r ) ' " ( $ n - , - W  
,=n r = o  

= V = O  (;)(-1)~n"-q r-0 i r q ( $ " - , - $ , )  

n 

(3.11) 
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Comparing the extremes of the sequence (3.11) it is clear that, for m even, (3.10) is 
satisfied automatically. This fact implies that, among the n - 1 conditions (3.10), only 
[ n / 2 ]  of them are independent ([XI indicates the integer part of x). There is, however, 
a more relevant implication deriving from this dependence: if n is even, the accomplish- 
ment of (3.10) implies that P, In($, - +"-,) = 0. But this is exactly the factor multiplying 
S ( u )  in (3.8), so that the ( n +  I)th derivative of g ( u )  vanishes, and its identification 
withf(u) is not possible any more. Consequently, one must be restricted to work with 
n odd. This fact is a direct consequence of the symmetry ( l . la ) ,  imposed on the 
transition kernel. Indeed, if this condition is relaxed, n could be an even integer. 

For n odd, (3.10) imply then ( n  - 1)/2 conditions to be satisfied by the ( n  + 1)/2 = 
1 + ( n  - l ) / 2  differences $,-I/J~-,. Therefore, all the solutions to (3.10) are multiples 
of a fundamental one. From a well known property of combinatorial numbers [7], a 
particular solution is 

. .  
(3.120) 

so that the general solution can be written as 

$r-$"-r=(-l)n-r($n %)( ") (3.126) 

which determines ( n  - 1)/2 conditions to be satisfied by the n + 1 coefficients $,. Then, 
(n+3) /2  of them can be freely chosen. This solves the problem of determining the 
possible forms of the function $(U, w) allowing the identification (3.7) of J:+'g(o) 
with f ( u ) ,  and therefore reducing the integral equation (3.2) to its differential form. 
Taking into account equations (3.8) and (3.9), it reads 

r 

g(u)J:+'g(u)= n ! ( $ . - $ o ) S ( u ) .  (3.13) 

There remains now one last question to be dealt with, namely, whether (3.13) is 
completely equivalent to the integral form (3.2). In fact, a particular solution to (3.13) 
is well determined only after n + 1 boundary conditions have been imposed. These 
boundary conditions imply a wide freedom in the choice of the solution to (3.13), 
which could be in contradiction to the fact that g(u) must be associated to the integral 
operator in (3.2) [cf (3.3)]. Therefore, one must determine the proper boundary 
conditions to be used in solving (3.13), according to the form imposed on the solution 
g ( u )  by (3.3). This problem is treated as follows: Consider the function 

This is the most general function satisfying (3.7). In fact, independentlyofthe boundary 
values d:g(O) ( r = O ,  1 , .  . . , n), its ( n +  I)th derivative is proportional to k(u)f(u) with 
the proper factor. Now, this value must be chosen so that g ( u )  satisfy (3.31, which, 
according to (3.9), takes the form 

g ( u ) =  +$I: w"-'k(w)f(w)dw+ i +"-,U' w"-'k(w)f(w)dw. (3.15) 
r = o  ,=0 

Subtracting (3.15) from (3.14) and making use of the solutions (3.12b) one gets 
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successively 

n r m  ~~ ~ U' 
= -  U'$"-. J, w"-%(w)f(w)dw+ d:g(O)- 

,=O ,=0 r !  

U' 
- U'$.-,(u"-'k)+ 1 d:g(O) - 

r=, r=o r !  

" 
(3.16) 

where the mean values (u'k) are defined according to (2.26). The proper choice for 
the boxndzry vz!ues af ,.(U) 2nd its deriv2tives is then 

d:g (O)  = r!$n-r(u"-rk)  ( r = O ,  1,. . . , n )  (3.17) 

completing the equivalence between the differential problem (3.13) and the original 
integral one. 

4. Summary and examples 

It is convenient to resume the steps of the reduction of the integral equation to its 
differential form in the following manner: One starts with a nonlinear integral equation 
of the form 

f(u) K ( u ,  w)f(w) dw = S ( u )  (4.1 ) 
0 

for the unknownf(u), with given positive source S ( u )  and kernel K ( u ,  w), This latter 
function is given by 

(4.2) 

where $(U, w) is an nth degree homogeneous polynomial (n odd) and 

$(U, w)= 1 $,u'w"-' (4.2a) 
,=n 

whose coefficients satisfy 

$,-Lr = (-I)"-,($" - "). (4.26) r 

Under these conditions, the integral equation can be reduced to the nonlinear (n + l ) t h  
degree differential form 

ol * ,b f i+ ' " ( . , l  = n I (SI, - dLl C l . . )  f "  91 

for a new unknown g ( u ) ,  which just coincides with the integral factor in the original 
equation, and is related to f( U )  through 

6\","U e,", ... \Y" YUJ- ," ,  \-.a1 

J;+'g(u)=n!(!bn - $ ~ ) k ( o ) f ( u ) .  (4.4) 
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Finally, the differential equation obtained has to be solved with the boundary conditions 

J:g(O)= r!$n-,(o"-'k) (4.5) 
for r = 0,1,. . . , n. Note that, as in the examples developed in section 2, the mean 
values (o 'k)  are not known a priori, and must be determined consistently once f (U) 

has been found. 
In order to illustrate the procedure proposed above, the case with n = 3 is developed 

explicitly hereafter. The possible forms of the transition kernel leading to the fourth- 
order nonlinear equation obtained in (3.13) contain then a third-degree polynomial 
reading 

*(U, w) = $ , u w 2 + $ 2 u 2 w + ~ 3 u 3 .  (4.6) 

According to (3.10), the coefficients $, must satisfy the following conditions: 

($1  - $2) +2($2- $1) + 3($3- $0) = 0 (4.70) 

($t  - $ 2 ) + 4 ( $ 2 - $ 1 ) + 9 ( $ 3 - $ ~ )  = o  (4.76) 

which, certainly, are not independent, as discussed before. Imposing these conditions 
on $(U, w) yields 

$(U, w) = $ o w 3 + $ , u W 2 + $ ~ u 2 W + ~ $ ~ + f ~ ~ ,  -$2) lu3  (4.8) 

so that three constants remain free to be fixed when determining the form of K ( u ,  w). 
Supposing that the function k ( u )  in (3.1) is taken to he positive, the positivity of the 
kernel is ensured requiring that 

$o+ $,x+$2x2+[$0+f($II - $z)lx'ao (4.9) 

for all x 3 0, which is accomplished if $o 3 0, JT2 - $, -s 3G0 and if the polynomial in 
(4.9) has no real roots for x > 0. 

Once these conditions are fulfilled, the integral equation can be reduced to the form 

g(u)J:g(u) =a$, -$2)S(u)  (4.100) 

to be solved with the following boundary conditions: 

Jug(0) = $2(v2k) 
(4.10b) 

g(0) = [$o+f($, - $2)I(U3k)  

J k ( 0 )  =2$ i (uk )  =6$o(k). 

The distribution function, solution to the integral equation, is then determined by 

(4.11) 

From the point of view of the applications, a particularly important example 
belonging to the class of kernels with n = 3 is the well known exact 'hard-sphere' model 
[8]. In this model, the transition kernel is obtained from (1.3) with I(u) = U, and reads 

u[l + f ( W / u ) z ]  for w < U 
for w i U, w[ l  +:(U/ w)'] 

K ( o ,  w ) =  (4.12) 

In the frame of the present formulation, the 'hard-sphere' model follows by putting 
k ( u ) = o - l ,  and taking $,=f, f i I = 0  and $2=1 ,  which implies $,=O. 
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As expected from the discussion at the end of section 2, a general solution to (4.3) 
can be obtained for the case of a monochromatic source, i.e. for S ( u )  as given in (2.7). 
In this case, in fact, the singular contribution in the LHS of (4.3) must come from d:+'g, 
which is proposed to have the form 

dE"g(0) = yS(u- u0) (4.13) 

where the constant y must he determined consistently. Taking into account the bound- 
ary conditions (4.51, the function g ( o )  reads 

(4.14) 

Equation (4.4) enables the calculation off (U). which is also monochromatic, and fixes 
the mean values in the summations of (4.14) to be 

$"-,(u"-'k)u' for U < un 

g ( u ) = [  X:=o I L , - , ( u " ~ ' k ) u ' + y [ ( u - u , ) " ] / n !  foru>uo.  

(4.14a) 

The identity of the coefficients multiplying the delta functions in both sides of (4.3) 
fixes finally the value of y according to 

(4.15) 

The distribution function is then 

f ( v ) =  (4.16) 

in full agreement with (2.8). 

5. Generalizations 

By exploiting the linearity of the operator X [ f ]  in (1 .1 )  with respect to the transition 
kernel K ( u ,  w), two generalizations of the form of this kernel are possible. They are 
analysed hereafter. 

5.1. Generalization I 

Consider equations (3.14) to (3.16). One can see that if a term of the type 
+(U, w ) k ( u ) k ( w ) ,  is added to the kernel proposed in (3.1) and (3.9), its effects can be 
absorbed by the initial conditions d : g ( O )  ( r  =0,1, .  . . , n ) ,  if the function +(U, w) is a 
symmetric polynomial of degree lower than or equal to n. Indeed, if 

E ( u ,  w ) = K ( u ,  w)++(u, w)k(u)k(w) (5.1) 
and 

with & = +s.s-,, the corresponding new dependent variable 
m 

i ( u ) = k ( u ) - l  [ k(u, w)f(w)dw 
J O  

can be also taken to satisfy (3.7), as the new terms do  not affect its ( n +  1)th derivative. 



4176 D H Zanelte 

Equating (3.14) and (3.15) for i ( u )  yields 
n U' 

,=n ,=n r=o r !  
1 u'$"._,(u"-'k)+ 1 U' 1 $,,(U"%)= J l i (0 ) -  

so that the boundary conditions which must now be taken are 

1 J : i ( O ) =  r ! [  $"-,(U"-%)+ $.Tr(u5-'k) 
s=, 

(5.3) 

= *! 1 [ ~ s r + $ m - r & n l ( ~ * ~ r k )  ( r = O ,  1 , .  . . , n) (5.4) 
I=, 

generalizing (3.17). It is worthwhile to remark that, by virtue of the symmetry of 
$(U, w), the nonlinear (n + 1)th degree ordinary differential equation obtained for i ( u )  
coincides exactly with (3.8). 

With respect to the two-folded character of the transition kernel, the additional 
terms contribute trivially to such structure. In fact 

fo rw<u  I[*( w, u)+$(u,  w)lk(u)k(w) forw>u. (5.5) 
[$(U, w)+$(u, w)lk(u)k(w) 

&U, W)' 

However, this generalization extends the form of the polynomial factor in k(u, w) to 
have terms with any power lower than or equal to n, i.e. allowing for a more complicated 
dependence in U and w for intermediate velocities. 

5.2. Generalization XI 

This second generalization regards the possibility of introducing, as a new transition 
kernel, a linear combination of two kemels of the type considered in section 3. In fact, 
consider (1.1) with K(u, w)=alKl(u ,  w)+a2K2(u, w), taking 

where the polynomials ILj(u, w) satisfy (3.9) and (3.10) with respect to two integers nj 
( i =  1 ,2) .  The constants mi are chosen so that K(u, w) is always positive. 

Equation (1.3) can now be written 

f(u)[a ,kl(o)gdu)+ ~ Z ~ Z ( U ) ~ ~ ( U ) I  = (5.7) 

where two new dependent variables have been introduced, namely 

g,(u)= 1; $,(U, w)k(w)f(w) dw+lum$,(w, U)k(w)f(w) dw (5.8) 

for i = 1,2.  Following the procedure detailed in section 3, both functions g,(u) can be 
made to satisfy 

J>&(u)  = Y i k i ( o ) f ( u )  (5.9) 

~ I Y ~ ~ ~ ( U ) J : ' ~ I ( U ) +  a 2 Y , g 2 ( u ) J ? g z ( u )  = Y I Y Z S ( ~ )  (5.10) 

Y2k2(U)J:'g,(U)-yiki(u)J~gz(u) = O  (5.11) 

with y , = a ~ $ , ( u ,  ~) -J?$~(u ,u ) .  Equation (5.7) then becomes 

which has to be solved with the compatibility condition 
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implied by (5.9), as from both g ,  and g ,  one should be able to derive the distribution 
functionf(u). Regarding the boundary conditions to be used to solve (5.10) and (5.111, 
they correspond exactly to those determined by (3.17),  applied successively to g l (u )  

The linear combination of two transition kernels like those studied previously, has 
led to a system of two differential equations. One of them is of the type already obtained 
in section 3; the other, instead, is a linear equation arising from a compatibility 
condition on the two new unknowns with respect to the sought distribution function. 
The extension to more complicated linear combinations follows straightforwardly. 

The generalizations presented in this section are relevant for the application of the 
reduction method to specific problems in transport theory. In fact, the simple 
homogeneous-polynomial form given by (3.9) will not generally be appropriate for 
modelling real situations. More general forms, like (5.1) and (5.6), are, however, 

the problem of fitting the interaction models found in practice with the polynomial 
forms considered in this paper is worked out, paying particular attention to the 
asymptotic (large and small U )  behaviour of the solutions to the integral equations. 

and g2(u). 

...̂ A .̂  c. I ^ I ^  ... :At. ^^ ^^^^_. -t.,- -I^^_^^ - c  ~ ^̂ .._ I.. .I.̂ ....-. ^^ *̂:̂ .. crpcbrcu LU L C L ~ C C ~ D  w i u i  dii auxpawc ur;grr;c UL acuudLy. u i  uici UGAL JCUIY~I, 

6. Models for real interaction 

It is evident that, when modelling a real interaction by means of a simplified form for 
the transition kernels, one desires to preserve in the distribution function satisfying 
the model equation some physically relevant features of the actual distribution. In 
particular, the behaviour off (u)  for large U, i.e. the velocity dependence of the high 
energy tail, is a fundamental parameter in both the qualitative and quantitative analysis 
of a wide class of applied problems in kinetic theory [I]. Therefore, it is interesting 
to discuss which characteristics are required in the form of the transition kernel, in 
order to ensure the correct asymptotic behaviour in the distribution function. In the 
frame ofthe theory developed above, such conditions will fix the physically meaningful 
forms of the functions k ( u )  and $(U, w ) .  

It can be seen that the asymptotic velocity dependence off (U), both for u + m  and 
U + 0, depends on the analogous features in the transition kernel (for tixed tinite w )  
or, more precisely, on the microscopic probability transition I(u). Indeed, expanding 
K ( U, w) in powers of w /  U up to the first order gives 

On the other hand, because of the symmetry of K ( u ,  w ) ,  its limiting value for u - t O  is 
given by 

K(u ,  w ) - I ( w )  (6.3)  
so that, for small velocities, f ( U) is proportional to the source term, namely 

(6.4) 
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Certainly, (6.2) and (6.4) display the asymptotic behaviour of the distribution 
function when the transition kernel is derived from a microscopic probability. However, 
when K ( U, w) is proposed as a mathematical model for the kinetic process, the features 
o f f (  u )  depend directly on the form of the transition kernel. Taking into account the 
form introduced in (3.1) and (3.9), and imposing the following physically reasonable 
limiting conditions 

lim u.1: w"-'k(w)f(w)dw=O 

Y - m  lim u ' ~ ~ w " ~ ' k ( w ) f ( w ) d w = O  

"-0 

for r = 0,1,. . . , n, the asymptotic behaviour of f (  u )  is 

and 

( 6 . 5 ~ )  

(6.56) 

(6.6) 

(6.7) 

Now, if the model kernel K ( u ,  w) is supposed to imitate the situation obtained for a 
given probability transition I( U), comparison between (6.2) and (6.6), and between 
(6.4) and (6.7), respectively, shows clearly that one should impose the conditions 

" 
k ( u )  1 $,u ' (u"- rk) - I (u)  f o r u + m  ( 6 . 8 ~ )  

,=a 

k ( u )  $._,u'(u"-'k)-constant for u + 0. (6.86) 

Equations (6.8) are general conditions to be satisfied by the functions k ( u )  and 
$(U, w), in order to reproduce correctly the limiting behaviour off(u) for large and 
small velocities, respectively. Observe that only ( 6 . 8 ~ )  depends on the form of the 
microscopic probability transition to be imitated. For a power-law interaction potential 
V ( r ) ,  I ( u )  behaves as uo for u + m ,  the constant a depending on the power of the 
radius r in the potential and the dimension of the space [a]. Therefore, since the 
polynomial in the LHS of ( 6 . 8 ~ )  exhibits also a power-law behaviour, k ( u )  can be 
taken to have the form 

k (  u) - up f o r u + m  (6.9) 
where p = a - R, and R is the maximum value of the index r so that $, # 0. In fact, 
the corresponding term in the polynomial $(U, w) dominates its u-dependence for high 
velocities. 

On the other hand, (6.86) fixes the form of k ( u )  for vanishing velocities to be also 
a power law, i.e. 

k ( u ) -  uq foru+O (6.10) 

now, with q = R - n, as the velocity dependence of I ( u )  is not involved in (6.86). 
Equations (6.9) and (6.10) are general criteria for choosing the form of k ( u )  and the 
values of n and R. Note, however, that these conditions do not determine uniquely 
such values, so that there remains a wide variety of functions from which one can 
select a model for the physical problem. 

r=o 
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Take, as an example, I ( u )  = U =  = U, i.e. the ‘hard-sphere’ interaction. As said in 
section 4, the kernel generated by this probability transition from (1.3), namely, (4.1 I), 
has the form required to apply the theory developed in section 3. For this case, in 
fact, one finds that k ( u )  = U?, so that p = q = -1, in agreement with the values (I = 1, 
n = 3 and R = 2. But suppose that one is interested in proposing a new model, imitating 
the ‘hard-sphere’ interaction for large and small velocities. Particular values satisfying 
the conditions imposed through (6.9) and (6.10) for a = 1 are p = q = 0, n = 1 and 
R = 1. Indeed, taking k ( u )  = 1 and $(U, w )  =U, one obtains 

f o r w < u  
for w >  U 

K(u ,  W)’ (6.11) 

or, more briefly, K ( u ,  w) =max(u, w). This is the so-called ‘maximum’ model, which 
displays a particularly simple form, in view of the values selected for the relevant 
velocity powers in the functions k ( u )  and $(U, w). This kernel cannot be derived from 
a particular form of [(U). Its validity as an imitation of the ‘hard-sphere’ interaction 
is analysed in detail in [SI. 

~. 

7. Couclusioo 

In the frame of the extended kinetic problem considered in the paper, the method 
presented here introduces a tool for reducing a nonlinear integral equation to a 
nonlinear ordinary differential equation. The convenience of such reduction resides in 
the fact that a well developed toolkit of analytical and numerical methods does exist 
for differential equations, whereas integral problems are usually treated approximately 
[I] .  The only restriction in the form of the kinetic equation regards the explicit 
expression of the model transition kernel, which preserves however the two-folded 
structure present in real interaction kernels. Nevertheless, one should become convinced 
that such a restriction is not particularly severe. In fact, the differential problem is 
independent of the factored function k ( u ) ,  which can be fixed to reproduce properly 
the asymptotic behaviour of the transition kernel, as required for obtaining a realistic 
description of the physical problem under study. Furthermore, the almost free choice 
in the degree of the polynomial $(U, w) multiplying the kernel, as well as the wide 
freedom when selecting its coefficients, permits a great variety of fine detail for K (  U, w )  
at intermediate velocities. A more complicated form for k ( o ) ,  as well as the discussed 
generalizations, can also contribute to these details. In fact, as seen in the last section, 
even when limiting conditions are imposed in order to properly represent real interac- 
tions, the remaining freedom in the choice of the transition kernel is indeed wide. In 
this sense, the reduction method can be considered to apply for a relevant class of 
transition kernels. 

Finally, one must bear in mind that the theory developed in the paper involves 
essentially the integral operator in the kinetic equation. This fact suggests the extension 
of the reduction method to a great variety of kinetic problems, in particular, not 
necessarily stationary ones. For instance, the evolution equation associated with the 
source-removal problem described in the introduction, namely 
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can be also reduced by the same procedure, obtaining now a partial differential equation. 
The method also applies to some generalizations of (1.2), for example 

r ( u ) f ( u ) + f ( u )  Iom K ( 0 ,  w)f(w)dw = S(u) 

where, in the considered extended kinetic problem, the first term represents removal 
interaction with a host medium through which the gas under study diffuses. This last 
equation, which reduces also to an ordinary differential form, is related with the 
Hammerstein-Chandrasekhar problem [2,9]. 

Furthermore, some linear integral problems could also be treated applying the same 
idea, i.e. the association of the integral operator with a new dependent variable. This 
is the case, for instance, in the Wiener-Hopf problem, appearing in neutron transport 
theory [l]. 
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